Cow dung and water gets mixed in the inlet. The inscription on the inlet serves transparency reasons. The tracking-unique-identity-code is also helping to keep quality standards up. ‘myc’ stands for myclimate.

The installation of domestic biogas plants substitutes the use of firewood and chemical fertilizers in the Karnataka region. In addition to the reduction of greenhouse gas emissions and less degradation of the forest people directly profit from higher crop yields and less indoor pollution. Moreover, the project will also reduce methane emissions from cattle manure.

8,033 biogas plants installed
6.25 t of CO₂ avoided by each plant
192,376 tonnes of wood not being deforested

The project installs domestic biogas plants in over 9,000 rural households in Karnataka State, India. The biogas installations are fed with animal dung and kitchen wastewater. The generated gas is then used for cooking. In addition, the slurry of the remaining manure serves as high quality fertilizer replacing chemical products. Traditionally, domestic energy needs for cooking in the project area are met with firewood and kerosene. The inefficient cook stoves that people traditionally use have a thermal efficiency of only eight to ten percent. Low family incomes make it
impossible for local people to substitute this traditional fuel. This led already to a degradation of the forest cover in the districts. Moreover, domestic biogas installations have positive sustainable development effects such as alleviating the workload for women and children and easing health problems caused by indoor pollution. The biogas unit will be of either two or three cubic metre capacity depending on the number and type of cattle owned by the household and the number of people in the household.

8,000 biogas digesters have been constructed and handed over to families since the beginning of the project.

The project will result in greenhouse gas (GHG) emission savings in the following ways: The biogas will displace GHG emissions from kerosene and fuel wood that are currently used for cooking. The biogas produced from cattle manure is a renewable source of energy. The biogas will displace GHG emissions from cattle manure that is currently dumped in pits near the household. The cattle manure is dumped along with other waste such as straw from the cow shed, some kitchen waste, crop residues and other organic matter and liquids in the pit. This organic waste is never dry and does not get mixed therefore animal waste is decaying anaerobically and emitting methane.

Me and my kids had to spend 4 hours each day to collect firewood. Now, it takes us just 20 minutes to produce biogas. There is no smoke in my house anymore and I get a great fertilizer for growing our vegetables.

Rani, Soumpura Village

The biogas technology is tried and tested in rural India. SKG Sangha, an Indian non-governmental organisation, will implement the project. SKG Sangha has already successfully implemented over 100,000 biogas units in India over the last 18 years.

And have a look at more pictures from the project on myclimate-Facebook!

This project contributes to 11 SDGs:

1. **No Poverty**
   The use of slurry (organic fertiliser produced by the farmers themselves) helps to prevent small farmers from becoming dependent on chemical fertilisers, thus improving their families’ financial situation.

2. **Zero Hunger**
   To date, the biogas systems have produced 299,883 tonnes of organic fertiliser and thus reduced 3,474 tonnes of chemical fertiliser, thus contributing to sustainable agriculture.
50,000 persons have benefited from better air quality since the start of the project.

Because the time-consuming collection of firewood is no longer necessary, children have more time to go to school and do homework. This gives each family almost 2.3 hours of additional time per day.

Only women are entitled to buy and own a biogas plant. This helps to level out the balance of power in the family and to strengthen the position of the women.

8,033 biogas digesters have been installed since the start of the project.

22 permanent jobs have been created for the local population and more than 8,000 people have been trained in the use of biogas plants.

The recycling of organic waste contributes to sustainable waste management.

Each biogas biodigester avoids 6.25 t CO₂ and reduced wood consumption by 3.7 t per year.

To date, the programme has reduced wood consumption by 192,376 tonnes and has thus saved 2,635 hectares of forest from deforestation.

The programme enables the transfer, dissemination and implementation of environmentally friendly technologies in India.